Your Everyday Destination for Science News & Research Articles

NASA’s solar probe is going to touch the Sun without melting

Here's How

NASA Goddard

NASA is launching one of its most ambitious projects yet within a few weeks. The Parker Solar Probe is going to swoop in and ‘touch’ the Sun – coming in closer to the solar surface than any probe has ever done before.

The probe: Parker’s three closest orbits will bring it within 6.1 million kilometers (3.8 million miles) of the Sun’s surface and inside its outer atmosphere, or corona, where temperatures reach millions of degrees Kelvin.

Heat is not Temperature

According to NASA, the trick to protecting Parker lies in the difference between temperature and heat, along with the density of space.

heat is not temperature
Image source: NASA Goddard-YouTube

We know that temperature is a measurement of how fast particles are moving, but heat measures how much energy they actually transfer. In space, you can have particles moving very fast, but not transferring a lot of heat, because there’s a lot of space between those particles.

The corona through which Parker Solar Probe flies, for example, has an extremely high temperature but very low density. Think of the difference between putting your hand in a hot oven versus putting it in a pot of boiling water (don\'t try this at home!) - in the oven, your hand can withstand significantly hotter temperatures for longer than in the water where it has to interact with many more particles. Similarly, compared to the visible surface of the Sun, the corona is less dense, so the spacecraft interacts with fewer hot particles and doesn\'t receive as much heat.

Susannah Darling NASA

Heat Shield protection from the Sun

The heat shield, which protects most of the instruments on board the probe, will only be heated to about 1,644 degrees Kelvin (1,370 °C or 2,500 °F). It’s fantastic technology, really. It’s made of two superheated carbon-carbon composite boards, which sandwich an 11.5-centimetre (4.5 inches) carbon-foam core.

carbon-carbon foam heat shield parker probe the sun
Heat shield made of superheated carbon-carbon composite boards. Image source: NASA Goddard-YouTube

The Sun-facing side of the probe is painted brilliant white in the ceramic paint to deflect as much of the Sun’s light as possible; it’s about 2.4 meters (8 feet) in diameter. The shield weighs just 72.5 kilograms (160 pounds) because of the lightness of the foam.

And, amazingly, it keeps everything behind it at or below 300 Kelvin (30 C° or 85 F°).

Protection by Smart software chip

Instrumentation that needs to be able to work outside the safety of the heat shield is protected by its materials. The probe’s Faraday cup, to catch charged particles in order to measure their flow, is made of titanium-zirconium-molybdenum, which has a melting point of about 2,622 Kelvin.

The chips that produce the electric field for the instrument are forged from tungsten, the metal with the highest known melting point – 3,695 Kelvin.

sensors parker probe the sun
Onboard sensors of Parker probe, Image source: NASA Goddard-YouTube

And the electrical wiring is made out of niobium, which has a melting point of 2,750 Kelvin. Sensors on the spacecraft’s body will help it correct its orientation so that the delicate instrumentation does not become exposed to the Sun’s scorching rays.

As for the solar panels, which are used to collect solar energy to power the probe, they can retract behind the heat shield to prevent overheating when Parker gets too close to the Sun.

[better-ads type=”banner” banner=”1468″ campaign=”none” count=”2″ columns=”1″ orderby=”rand” order=”ASC” align=”center” show-caption=”1″][/better-ads]

Cooling System protection

The whole probe is cooled by pressurized deionized water, the liquid best able to handle the temperature extremes to which Parker will be exposed.

cooling system parker probe the sun
Onboard cooling system, Image source: NASA Goddard-YouTube

You have to admit, that is a lot of ingenious engineering. We can’t wait to see what Parker helps us find out about the Sun, its crazy wind, and its even crazier outer atmosphere.

Source / Journal NASA

Get real time updates directly on you device, subscribe now.

Retriving Opinions From Visitors...

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. AcceptRead More